PRODUCT SPECIFICATION

NIST Traceable Size Standards

3000, 4000, 8000, 9000 Series

Calibrate and validate particle sizing and counting instruments

Thermo Scientific[™] NIST (National Institute of Standards and Technology) Traceable Size Standards work on an open platform without bias or restriction on any instrument brand or model. They come packaged in easy-to-use dropper-tipped bottles to minimize operator error by delivering the precise volume of beads into the instrument. Various polystyrene, silica, and glass beads are available in a broad range of sizes (20 nm to 2000 µm) to satisfy a broad range of instrument quality control and calibration needs.

- NIST traceability provides an official, objective third-party comparison of our beads to a known standard and maintained by the National Institute of Standards and Technology
- Certificate of Calibration and Traceability to NIST enables labs to show compliance to ISO 9000, ISO 10012, ANSI/NCSL Z540, GMP/GLP and other standards and regulations
- Superior uniformity ensures precision in calibration from instrument to instrument, from lab to lab
- Uncertainty of Measurement is stated on the Certificate of Analysis
- Excellent lot-to-lot reproducibility minimizes size shift between calibrations

Includes Certificate of Calibration and Traceability to NIST, which helps in audits by answering the question: "How do you know the instrument is measuring properly?"

3000 Series - Monodispersed Beads

Applications: Instrument calibration, microscopy, light scattering studies, colloidal systems research, assessing various sizes of bacterial, viral, ribosomal, and sub-cellular components

The highly uniform 3000 Series of sulfate beads has a very narrow standard deviation since they are calibrated in nanometers using NIST traceable methodology. The beads are packaged as aqueous suspensions in 15 mL dropper-tipped bottles in concentrations optimized for ease of dispersion and colloidal stability.

Note: Due to minor variations between batches, the 3000 series size range may change slightly from batch to batch.

4000 Series - Monosized Beads

Applications: Instrument calibration, microscopy, light scattering studies, and colloidal systems research

The nominal diameter of the 4000 Series Duke Standards monosized beads is calibrated with NIST traceable microscopy methods, while the size distribution and uniformity is measured by electrical resistance analysis or optical microscopy.

- Beads with a nominal diameter from 1 μm to 160 μm are made from polystyrene and packaged as aqueous suspensions in 15 mL dropper-tipped bottles in optimum concentrations for easy dispersion, handling and dilution
- Beads with nominal diameters of 200 μm to 650 μm are packaged as dry particles. They are made from polystyrene crosslinked with divinylbenzene. The two largest beads (750 μm and 1000 μm) are polymer products

4000 Series, 15 mL		4	4000 Series, 15 mL			
Diameter	% Solids	Cat. Number	Diameter	% Solids	Cat. Number	
Aqueous Suspensions,		Ac	Aqueous Suspensions,			
Calibrate	d by Optical Mi	croscopy	Calibra	Calibrated by Optical Microscopy		
1.0 µm	1.0	4009A	50 µm	1.4	4250A	
1.0 µm	1.0	4010A	60 µm	1.2	4260A	
1.1 µm	1.0	4011A	70 µm	2.0	4270A	
1.3 µm	1.0	4013A	80 µm	1.8	4280A	
1.6 µm	1.0	4016A	100 µm	2.1	4310A	
1.8 µm	1.0	4018A	115 µm	2.6	4311A	
2.0 µm	0.4	4202A	140 µm	4.0	4314A	
2.5 µm	0.5	4025A	160 µm	4.8	4316A	
3.0 µm	0.5	4203A	U	Uniform Dry Spheres,		
4.0 µm	0.4	4204A	Calibra	Calibrated by Optical Microscopy		
5.0 µm	0.3	4205A	200 µm	2.3 x 10 ⁵ #/g	4320A	
6.0 µm	0.3	4206A	240 µm	1.3 x 10 ⁵ #/g	4324A	
7.0 µm	0.3	4207A	280 µm	8.3 x 104 #/g	4328A	
8.0 µm	0.3	4208A	300 µm	6.7 x 10 ⁴ #/g	4330A	
9.0 µm	0.3	4209A	400 µm	2.8 x 10 ⁴ #/g	4340A	
10 µm	0.2	4210A	500 µm	1.4 x 104 #/g	4350A	
12 µm	0.2	4212A	550 µm	1.1 x 104 #/g	4355A	
15 µm	0.3	4215A	650 µm	6.6 x 10 ³ #/g	4365A	
20 µm	0.3	4220A	Uniform Dry	Uniform Dry Spheres, Calibrated by Optical		
25 µm	0.5	4225A	M	Microscopy - Polymer		
30 µm	0.6	4230A	750 µm	3.8 x 10 ³ #/g	4375A	
40 µm	0.7	4240A	1000 µm	1.6 x 10 ³ #/g	4400A	

3000 Series, 15	5 mL, 1% Solids
Diameter	Cat. Number
Aqueous Si	uspensions,
Calibrated by Ph	oton Correlation
Spectroso	copy (PCS)
20 nm	3020A
30 nm	3030A
40 nm	3040A
Aqueous Si	uspensions,
Calibrated by Trar	smission Electron
Microsco	py (TEM)
50 nm	3050A
60 nm	3060A
70 nm	3070A
80 nm	3080A
90 nm	3090A
100 nm	3100A
125 nm	3125A
150 nm	3150A
200 nm	3200A
220 nm	3220A
240 nm	3240A
270 nm	3269A
300 nm	3300A
350 nm	3350A
400 nm	3400A
450 nm	3450A
500 nm	3495A
500 nm	3500A
560 nm	3560A
600 nm	3600A
700 nm	3700A
800 nm	3800A
900 nm	3900A

8000 Series - Silica Beads

Applications: Instrument calibration, microscopy, light scattering studies, and colloidal systems research

These opaque 8000 Series Duke Standards beads provide more contrast than polymer beads in optical and electron beams.

9000 Series - Glass Beads

Applications: Particle measurement spacers

Available as NIST traceable uniform borosilicate or soda lime glass beads, the 9000 Series Duke Standards provide greater tolerance to chemicals and solvents than non-polystyrene beads, and have a higher mechanical and thermal stability. Our process also ensures the removal of any non-spherical and broken beads.

9000 Series, 1 gram				
Diameter	Approximate Count / Gram	Cat. Number		
Uniform Borosilicate Glass Dry Spheres -				
(Calibrated by Optical Micros	сору		
2 µm	9.5 x 10 ¹⁰	9002		
5 µm	6.1 x 10 ⁹	9005		
8 µm	1.5 x 10 ⁹	9008		
10 µm	7.6 x 10 ⁸	9010		
15 µm	2.3 x 10 ⁸	9015		
20 µm	9.5 x 10 ⁷	9020		
	orm Soda Lime Glass Dry S			
	Calibrated by Optical Micros	сору		
30 µm	2.8 x 10 ⁷	9030		
40 µm	1.2 x 10 ⁷	9040		
50 µm	6.1 x 10 ⁶	9050		
60 µm	3.5 x 10 ⁶	9060		
70 µm	2.2 x 10 ⁶	9070		
80 µm	1.5 x 10 ⁶	9080		
90 µm	1.0 x 10 ⁶	9090		
100 µm	7.6 x 10 ⁵	9100		
110 µm	5.7 x 10⁵	9110		
120 µm	4.4 x 10 ⁵	9120		
140 µm	2.8 x 10 ⁵	9140		
170 µm	1.6 x 10 ⁵	9170		
200 µm	9.5 x 10 ⁴	9200		
230 µm	6.3 x 10 ⁴	9230		
280 µm	3.5 x 10 ⁴	9280		
330 µm	2.1 x 10 ⁴	9330		
400 µm	1.2 x 10 ⁴	9400		
480 µm	6.9 x 10 ³	9480		
550 µm	4590	9550		
650 µm	2780	9650		
750 µm	1810	9750		
950 µm	890	9950		
1000 µm	760	91000		
2000 µm	95	92000		

8000 Series, 15 mL, 2% Solids			
Diameter	Cat. Number		
0.5 µm	8050		
0.7 µm	8070		
1.0 µm	8100		
1.6 µm	8150		

Values for Borosilicate and Soda Lime Glass

The following properties (table below) are typical values for bulk borosilicate and soda lime glass. These values have not been measured and are not assay values for a specific batch of particles. The data is for informational purposes only and should not be used as calibration values.

Mechanical/ Electrical/ Thermal Properties				
Units	Borosilicate Glass	Soda Lime Glass		
Young's Modulus [106 psi]	10.5	10.0		
Hardness [Moh]	6.5	6-7		
Dielectric Constant: [22°C, 106 Hz]	5.8	6.9		
Softening Point [°C]	846	700		
Typical Composition				
SiO ₂	52.5%	60 - 72.5%		
Na ₂ 0	0.3%	13.7 - 17%		
CaO	22.5%	9.8 - 18%		
MgO	1.2%	1 - 3%		
Al ₂ O ₃	14.5%	0.4 - 4%		
FeO/ Fe ₂ O ₃	0.2%	0 - 0.2%		
K ₂ 0	0.2%	0 - 0.1%		
B ₂ O ₃	8.6%	0.0%		

Note: All diameters shown for all product series (3000, 4000, 8000, 9000) are nominal diameters. Please contact us for exacting diameters.

NIST Traceable Size Standards

3000, 4000, 8000, 9000 Series

Instrument Calibration

Manufacturers, as well as calibration lab managers and technicians, use size standards to calibrate particle sizing and counting instruments to make sure they size properly and accurately, and comply with regulations. This is done regularly on a daily, weekly and between-test basis due to the eventual degradation of the lasers and optics, which causes inconsistent signals that could result in users working with potentially erroneous data.

Validation/Compliance

For regulated labs and instrument manufacturers, instruments must be tested to ensure they are performing according to the standard operating parameters. There are three basic qualification procedures: installation, operation, and performance.

Industrial

Size standards are used for filter testing, vial washers, spacers, semiconductor wafer fabrication, contamination control, wide-size material analysis, laser diffraction studies, and more. Spacer particles establish the correct cell gap during the assembly of liquid crystal displays and other precision microelectronics. Glass particles have sufficient thermal stability to withstand heating and good compression strength, as to not break or fracture under pressure.

Specifications	3000	4000	8000	9000 (borosilicate)	9000 (soda lime)
Particle composition	Polystyrene	Polystyrene	Silica	Borosilicate glass	Soda lime glass
Density	1.05 g/cm3	1.05 g/cm ³	1.05 g/cm ³	2.5 - 2.55 g/cm ³	2.4 - 2.6 g/cm ³
Index of Refraction (25°C)	1.59 @ 589 nm	1.59 @ 589 nm	1.40 - 1.46 @ 589 nm	1.56 @ 589 nm	1.50 - 1.52 @ 589 nm
Additives	Trace amount of surfactant		None	None	None
Documentation	Certificate of Calibration & Traceability to NIST				
Storage and handling	Unless otherwise stated, refrigerate (2-8°C) product when not in use but do not freeze. Store upright and keep bottle tightly sealed. Mix product with gentle inversion by hand or vortex mixer prior to use.				

Clinical Diagnostics Particle Technology 46500 Kato Road Fremont, California 94583 U.S.A. 1-800-232-3342 (USA) +1-510-979-5000 (International) info.microparticles@thermofisher.com

Find out more at thermofisher.com/particletechnology

© 2017 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. **PS-10021649-2MTL-SIZE-STANDARDS-EN**

